LABETTE COMMUNITY COLLEGE BRIEF SYLLABUS

SPECIAL NOTE:
This brief syllabus is not intended to be a legal contract. A full syllabus will be distributed to students at the first class session.

TEXT AND SUPPLEMENTARY MATERIALS USED IN THE COURSE (if any):
Please check with the LCC bookstore, http://www.labette.edu/bookstore/bkstore.htm, for the required texts for this class.

COURSE NUMBER: RADI 214
COURSE TITLE: SIMULATIONS IN RADIOGRAPHY II
CREDIT HOURS: 2
DEPARTMENT: Radiography
DIVISION: Health Science
PREREQUISITE: RADI 113, Simulations in Radiology I
REVISION DATE: 12 / 2011

COURSE DESCRIPTIONS:
Laboratory study of the radiographic procedures used to visualize the anatomical structures of the scapula, pelvic girdle, bony thorax, spine and head.

COURSE OUTCOMES AND COMPETENCIES:
Students who successfully complete this course will without references and with 86% accuracy be able to:

1. Comprehend those radiographic procedures used to demonstrate the bony thorax.
 • In a simulated environment the learner will, without radiation, demonstrate the examinations of the:
 • Ribs AP Upper, AP Lower
 • RAO, LAO, RPO, LPO
 • PA Chest
 • Sternum - RAO, Lateral
 • Sternoclavicular joints - RAO and LAO
 • In a simulated environment the learner will, with radiation and a phantom, produce and label radiographs of the:
 ▪ Ribs - AP Upper, AP Lower and Oblique
2. Critique radiographs of the bony thorax.
 • Analyze finished radiographs of the ribs for the following.
 ▪ Proper positioning of anatomical part.
 ▪ Proper technical factors.

3. Comprehend those radiographic procedures used to demonstrate the complete vertebral column.
 • In a simulated environment the learner will, without radiation, demonstrate the examination of the:
 ▪ Thoracic spine - AP, Lateral, Swimmers
 ▪ Lumbar - AP, Oblique, Lateral, Spot
 ▪ Sacrum - AP, Lateral
 ▪ Coccyx - AP, Lateral
 ▪ SI joints – RPO & LPO
 • In a simulated environment the learner will, with radiation and a phantom, produce and label radiographs of the:
 ▪ Thoracic Spine - AP, Lateral
 ▪ Lumbar - AP, Oblique, Lateral, Spot
 ▪ Sacrum - AP, Lateral
 ▪ Coccyx - AP
 ▪ SI joint – RPO
 ▪ Cervical spine – copy films from the clinical education site.

4. Critique radiographs of the complete vertebral column.
 • Analyze finished radiographs of the cervical spine, thoracic spine, lumbar spine, and SI joints and the sacrum and coccyx for the following.
 ▪ Proper positioning of anatomical part.
 ▪ Proper technical factors.

5. Comprehend those radiographic procedures used to demonstrate the cranium and facial bones.
 • In a simulated environment the learner will, without radiation, demonstrate the examinations of the:
 ▪ Skull – PA, PA Caldwell, Townes, Lateral
 ▪ Facial – Waters, SMV, Rhese, Mandible, TMJ
 • In a simulated environment the learner will, with radiation and a phantom, produce and label radiographs of the:
 ▪ Skull – PA, PA Caldwell, Townes, Lateral
 ▪ Facial – Waters, SMV, Rhese, Mandible, TMJ

6. Critique radiographs of the cranium and facial bones.
 • Analyze finished radiographs of the skull and facial bones for the following.
 ▪ Proper positioning of anatomical part.
 ▪ Proper technical factors.
7. Complete simulated competency examinations for each anatomic section.

- In a simulated environment the learner will, without radiation and with 86% accuracy, demonstrate radiographic examinations from the following:
 - Humerus, Shoulder, Clavicle, Scapula, AC joints, SC joints, Sternum, and Ribs.

- In a simulated environment the learner will, without radiation and with 86% accuracy, demonstrate radiographic examinations from the following:

- In a simulated environment the learner will, without radiation and with 86% accuracy, demonstrate radiographic examinations from the following:
 - Skull and Facial bones.

8. Given a series of radiographs to identify anatomy and radiographic positions.

- Using radiographs, the learner will with 86% accuracy, identify anatomy, identify radiographic positions, and structures demonstrated on the following radiographic procedures: